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Abstract

Current methods for word alignment require considerable amounts of parallel text to deliver ac-
curate results, a requirement which is met only for a small minority of the world’s approximately
7,000 languages. We show that by jointly performing word alignment and annotation transfer in
a novel Bayesian model, alignment accuracy can be improved for language pairs where annota-
tions are available for only one of the languages—a finding which could facilitate the study and
processing of a vast number of low-resource languages. We also present an evaluation where
our method is used to perform single-source and multi-source part-of-speech transfer with 22
translations of the same text in four different languages. This allows us to quantify the consid-
erable variation in accuracy depending on the specific source text(s) used, even with different
translations into the same language.

1 Introduction

Word alignment is the problem of identifying translationally equivalent words across the languages of
a parallel text. It has found widespread use for enabling applications such as statistical machine trans-
lation (Brown et al., 1993; Koehn et al., 2003), annotation transfer (Yarowsky et al., 2001), word sense
disambiguation (Diab and Resnik, 2002) and lexicon extraction (Wu and Xia, 1994).

Although many types of algorithms have been explored, the main line of research through the last
couple of decades has been based on the generative IBM models introduced by Brown et al. (1993).
What these models have in common is that they are unsupervised, asymmetric models, assuming one of
the languages in a bitext (the source language) generates the corresponding text in the other language
(the target language), word by word.

Most often, a variant of the Expectation-Maximization algorithm (Dempster et al., 1977) has been
used for inference in these models, but recently there has been some work using Bayesian alignment
models using Gibbs sampling for inference (DeNero et al., 2008; Mermer and Saraçlar, 2011; Gal and
Blunsom, 2013). The incorporation of Bayesian priors into these models has been shown to improve
accuracy, since they provide a flexible way of biasing the model towards empirical observations about
language, most importantly that a given word type tends to have a very limited number of translations.

While the basic word alignment models use only lexical co-occurrence and word order, lexical data
tends to be sparse and a number of authors have explored the usefulness of other information sources.
Toutanova et al. (2002) showed that Part of Speech (PoS) tags can be integrated into the IBM models to
improve word alignment accuracy, and others have reported similar results for dependency (Cherry and
Lin, 2003; Wang and Zong, 2013) and phrase-structure (Yamada and Knight, 2001) parse trees, and for
lemmatized texts (Bojar and Prokopov, 2006).

In addition to the studies just mentioned that showed how various types of linguistic annotation can be
used to guide word alignment, there has been research showing that the reverse also holds: word-aligned
parallel texts can be used to transfer annotations and models from languages where those resources exist
to languages where they do not. Pioneering work by Yarowsky et al. (2001) explored tasks such as PoS
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tagging, shallow parsing and lemmatization, which was followed by e.g. dependency parsing (Hwa et
al., 2005).

The present work combines these previous lines of work by exploring joint models of word alignment
and annotation transfer (of PoS tags), within a Bayesian framework. The source code of our implemen-
tation is available at http://www.ling.su.se/spacos.

2 Methods

This section first discusses Bayesian word alignment using IBM-based models along with extensions to
these, and finally describes our model of joint PoS transfer and word alignment.

2.1 Bayesian IBM models
The IBM 1 alignment model can be extended with sparse Dirichlet priors, and efficient inference is
possible using Gibbs sampling (Mermer and Saraçlar, 2011; Mermer et al., 2013; Gal and Blunsom,
2013) or Variational Bayesian techniques (Riley and Gildea, 2012).

IBM model 1 assumes each target word tj = f of a sentence is generated by one source word saj = e
through the alignment variable aj , and that all words are generated independently and do not depend on
the sentence positions i and j. The probability of a target sentence t (of length J) and an alignment a
given a source sentence s (of length I) then becomes

P (t,a|s) ∝ p(J |I)
J∏
j=1

P (tj |saj ) (1)

One drawback of this model (apart from the extreme independence assumptions addressed by later
IBM models) is that there is no penalty for having very flat distributions P (f |e) for target words con-
ditioned on a source word, a fact that causes the so-called garbage collection effect where rare source
words are incorrectly linked to a large number of target words. By using priors on the translation distribu-
tions that discourage such solutions, it is possible to improve alignment accuracy. Mermer and Saraçlar
(2011) introduced the use of Dirichlet priors for this task. If the Dirichlet parameter α is 1, this reduces
to the uniform distribution, but it turns out that by using much smaller values of α, below about 10−2

(Riley and Gildea, 2012, Figure 1), the model better reflects the empirical observation that words tend to
have very few possible translations.

2.2 Inference
For the standard IBM models, the EM algorithm is normally used for inference. In the Bayesian version
with Dirichlet priors, we mentioned above that two main options have been investigated: Variational
Bayes and Gibbs sampling. While both methods have been shown to improve word alignment accuracy
for IBM model 1, the computational complexity of Gibbs sampling is lower with more complex models
(Östling and Tiedemann, 2016, Section 3.2). For this reason, Gibbs sampling is used in the present work
and will be discussed in further detail.

Gibbs sampling (Gelfand and Smith, 1991) is a specific instance of the more general Markov Chain
Monte Carlo algorithm, which is used to draw samples from a model M which defines a probability
function pM (x) over the variable space x. This is done by constructing a Markov chain with pM as its
stationary distribution and performing a sufficiently long random walk in it. A Gibbs sampler achieves
this by specifying for each variable xi in x a sampling distribution P (xi = a|x−i) for xi conditioned
on x−i, which denotes all variables in x except xi. For IBM model 1, this gives the following sam-
pling equation, which we also use, and for more complex models extend with additional factors given
Equation (4):

P (aj = i) =
na−j ,si,tj + αtj∑
f (na−j ,si,f + αf )

(2)

Here, na−j ,e,f is a count vector representing the number of times each source type e is aligned to each
target type f under the alignment a, not counting the alignment at position j. In the end, we are interested



in computing the expectations E [δaj ,i] under the alignment model, where δ is the Kronecker delta. Given
a series of samples of a(t) for t ∈ 1 . . . T , we approximate this using

E [δaj ,i] ≈
1

T

T∑
t=1

P (aj = i|a(t)−j , s, t) (3)

The initial alignments a(0) are sampled from a uniform distribution, and in order to reduce initialization
bias we average the marginals from eight independently initialized samplers. For details on the tradeoffs
involved in choosing the number of samplers and sampling iterations, we refer to Table 2 of Östling and
Tiedemann (2016).

2.3 Word order and fertility

Even with good prior parameters, IBM model 1 is a poor model of word alignment because it ignores two
important characteristics of parallel text: word order and morpheme counts. While different distortion
models have been used to model word order, we use the HMM-based model of Vogel et al. (1996), which
has been demonstrated to deliver better performance than either no distortion model (like IBM model 1)
or models based on absolute sentence positions (IBM models 2 and 3). This introduces a distribution
P (aj − aj−1|I) of the “jump” aj − aj−1 in the source sentence when moving one step in the target
sentence.

As a way of modeling the relative number of morphemes in a word for a pair of languages, the fertility
of a source word e is defined as the number of target words it is aligned to in a particular context. This is
modeled using a distribution P (φi = k|si = e), where the fertility φi at position i is conditioned on the
word e at that position. This is particularly important when the languages have large differences in word
formation strategies and the general level of morphological complexity.

Zhao and Gildea (2010) explored a model with a word order and fertility model as described above, but
based their work on the EM algorithm, using Gibbs sampling only for approximating the expectations.
An important conclusion from their work is that a simple HMM with fertility model is competitive with
the more complex IBM model 4, and we follow them in using this model as our baseline. Our full
baseline model is given by

P
(
s, t,a,θ,ψ,π,α,β,γ

)
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(4)

where K is the number of parallel sentences, θ ∼ Dir
(
α
)

are the lexical translation parameters, ψ ∼
Dir
(
β
)

are the categorical distribution parameters for the word order model P
(
aj − aj−1 = m|I

)
, and

πe ∼ Dir
(
γ
)

for the fertility model P (φi = k|si = e).

2.4 PoS-guided word alignment

This work follows Toutanova et al. (2002) in adding another factor to the model, akin to the lexical
translation probability P (f |e) but using the PoS tags of the respective words, P (T tf |T se). The main
difference is that in their work PoS tags for both source and target languages were assumed, whereas
here only one of the languages is assumed to be PoS-annotated. For the other language, the PoS tags are
sampled using the method described below.



Algorithm 1 Alternating alignment-annotation.
. Align a single sentence pair s, t. The extension to multiple sentences is straightforward.
function AAA(s, t)

. initialize alignments using the baseline HMM + fertility model

. the forward direction uses alignment vector a
a← Baseline(s, t)
. the backward direction uses alignment vector b
b← Baseline(t, s)
while sampling do

M ← estimate bigram HMM model using a, b, s, t,T s

. set the target sentence tags T t using the Viterbi algorithm
T t ← argmaxT P (T |M)
. sample alignment variables a, b
for all j ← 1 . . . J do

aj ∼ P (aj = i|a−j , s, t,T s,T t)
end for
for all i← 1 . . . I do

bi ∼ P (bi = j|b−i, s, t,T s,T t)
end for

end while
. return expected values for PoS tags alignments, as in Equation (3)
return E [a],E [b],E [T t]

end function

2.5 PoS transfer

We focus on applying PoS transfer as a way of obtaining better word alignment accuracy, rather than
improving PoS transfer as such. These are largely complementary goals, as our evaluation in Section 3
shows that small changes in PoS tagging accuracy do not seem to influence alignment accuracy. For this
reason, and because of our focus on low-resource languages precludes using data-intensive approaches
like that of Das and Petrov (2011), we choose the simple method of Yarowsky and Ngai (2001) as a
starting point for the PoS transfer part of our model. The basis of this method is to use heuristics to
estimate a robust first-order HMM tagger from (noisy) projected tags, and to re-tag the data using this
tagger. Furthermore we extended the tagger using the affix-tree method of Schmid (1994) for rare words,
in order to be able to handle morphologically complex languages better.

While it would have been preferable for reasons of theoretical elegance to use a simpler PoS transfer
model, matching the alignment model, such attempts by Östling et al. (2015) resulted in very modest
improvements for their sign language data set, and their model gave no improvement at all for our data
sets.

2.6 Alternating alignment-annotation (AAA)

Algorithm 1 summarizes our method, which can be viewed as a modified Gibbs sampler of the latent
alignment variables a and b (in the forward and backward alignment direction) as well as the target-side
PoS tags T t. While the PoS transfer part is not stochastic,1 it operates on samples of the alignment
variables a and b and can be seamlessly integrated into the sampler.

3 Evaluation

The empirical evaluation aims at investigating whether the alternating alignment-annotation (AAA) al-
gorithm improves word alignment and/or PoS transfer accuracy, compared to the corresponding PoS-

1We also tried sampling T t using marginal distributions computed by the forward-backward algorithm, but found no effect
on the accuracy of the algorithm.



Corpus Sentences |S| |P |

English-French 1 130 588 4 038 17 438
Romanian-English 48 641 5 034 5 034
English-Inuktitut 333 185 293 1 972
English-Hindi 3 556 1 409 1 409
English-Swedish 692 662 3 340 4 577

Table 1: Total corpus sizes (in sentences) and number of (S)ure and (P)ossible alignment links in their
respective evaluation sets.

unaware Bayesian IBM model with an HMM word order model and fertility.

3.1 Data

In order to assess the general usefulness of the method presented, a number of parallel corpora represent-
ing a diverse set of languages and genres are used: the English-French Hansards corpus in the version
presented by Mihalcea and Pedersen (2003), the Romanian-English, English-Inuktitut and English-Hindi
corpora from Martin et al. (2005), as well as parts of the Swedish-English Europarl corpus (Koehn, 2005)
with the evaluation set of Holmqvist and Ahrenberg (2011). In addition, a set of translations of the New
Testament will be used to investigate the quality of the transfered PoS tags. Some properties of these
corpora are summarized in Table 1.

Silver-standard PoS annotations were provided for English, French and German by the Stanford Tag-
ger (Toutanova et al., 2003) and for Swedish by Stagger (Östling, 2013). The native tagsets were mapped
to the Universal PoS Tagset of Petrov et al. (2012).

3.2 Experimental setup

The main intended use case is a fairly short parallel text, with two very different languages of which
only one has an accurate PoS tagger available. This excludes the possibility of extensive per-language
tuning (unlike some of the previous results cited), and in this evaluation the different language pairs use
identical parameters to the largest possible extent.2 We fixed the hyperparameters in Equation (4) to
α = 10−5, β = γ = 1.

The experiments use eight individually initialized samplers, each of which used a pipelined approach
where initially a lexical-only model equivalent to that of Mermer and Saraçlar (2011) was used, then a
word order term using the HMM model was added, then the fertility term, and finally (when applicable)
the PoS translation probability. No burn-in period was used during sampling, since the initial value of
the last pipeline step is already quite good.

Since the model is asymmetric, the alignments are run in both directions and symmetrized. A soft
variant of the intersection heuristic is used, where the final set of links L is defined as L = {(i, j) |
P (aj = i)P (bi = j) > t}. for a threshold value t, in these evaluations fixed to 0.25. This gives a fairly
conservative set of links, favoring precision before recall. Note however that the model does not use
NULL words, so this conservatism is not as severe as in models with NULL words.3 Heuristics based on
the union on the contrary tend to over-generate links under these conditions.

3.3 Results

The systems used as baselines in the evaluation are mainly from the Workshop on Parallel Text shared
tasks (Mihalcea and Pedersen, 2003; Martin et al., 2005), where most of the data sets used were intro-

2The main exception is that some of the language pairs (Romanian-English and English-Hindi), following previous work,
use a poor man’s stemming trick where only the first four letters of each token is used. The only other exception is that the
English-French evaluation did not use the fertility parameter, since it showed no further improvement beyond the plain HMM
model.

3Later experiments with a related model (Östling and Tiedemann, 2016, compare their Table 2 with our Table 2) show
that for some language pairs in particular, using NULL with standard symmetrization heuristics gives considerably worse AER
scores.



duced: ISI2 (Fraser and Marcu, 2005), JHU (Schafer and Drábek, 2005), UMIACS2 (Lopez and Resnik,
2005) and XRCE (Dejean et al., 2003). The Swedish-English figures, LIU, are from Holmqvist and
Ahrenberg (2011). Finally, we have run GIZA++ (Och and Ney, 2003) on the corpora as an additional
baseline.4 Results from previous work using more data than a bitext plus PoS tags for one of the lan-
guages are not included, although some such systems have obtained better results on some of the corpora
used, using e.g. semi-supervised discriminative training (Liu et al., 2010).

Table 2 summarizes the main results of the evaluation. In all cases, the alternating alignment-
annotation method surpasses the baseline model that does not use PoS tags. The model is generally
competitive compared to previous work, in particular for the smaller corpora and where the languages
are substantially different. The improvement compared to the non-Bayesian baselines is particularly
good for the English-Inuktitut corpus, which could be due to the fact that the morpheme/word ratio of
Inuktitut is very high, resulting in very many low-frequency words that tend to function as garbage col-
lectors in non-Bayesian models. The situation is similar for the English-Hindi corpus, although in this
case the cause for the many rare words is rather the short bitext than the languages themselves.

It is interesting to compare the corresponding AAA and Supervised figures in Table 2, where the only
difference is that AAA uses a supervised PoS tag on one language (English) and annotation transfer to
the other, whereas Supervised uses supervised PoS tags on both languages. The overall accuracy figures
are nearly identical, even though the accuracy of the transfered tags is lower. This indicates that the
word alignment algorithm is not very sensitive to PoS tagging accuracy, so that the relatively simple PoS
transfer method used is sufficient for the purpose of increasing word alignment accuracy.

There are multiple translations of the New Testament into each of English, French, German and
Swedish, which can be exploited for multi-source transfer. In our model, multi-source transfer can be
done trivially by averaging the expectations returned by Algorithm 1. Table 3 shows that this overall has
a large positive effect on PoS accuracy, with an average error reduction of one fourth compared to the
median single-source result, and one tenth compared to the best (out of 22) single-source result. Using
many translations in each language allows us to see how widely the accuracy varies, even when using the
same source (or target) language. This is due to many factors, including the large time span (hundreds of
years) between the different translations. In contrast, the multi-source results are, as could be expected,
much more robust. This is an encouraging result, given that the New Testament is perhaps the most
widely translated text of significant length, and offers a great possibility to transfer linguistic annotations
to languages where little other data is available.

4 Conclusions and future work

We have presented a model for joint word alignment and PoS annotation transfer, and shown empirically
that it leads to improved word alignment accuracy, in particular for low-resource languages. Using
automatically transfered PoS tags led to improvements that were as big as the improvements seen when
using PoS tags from supervised taggers on both sides of a bitext.

In addition, we took the opportunity to perform an evaluation investigating what kind of variation can
be expected depending on which translation(s) are used as source texts in PoS annotation transfer, and
found that this variation can be great, even among translations into the same language. Using multi-
source transfer reduces this variation considerably and typically gives better accuracy than even the best
single-source transfer among many.

In this study, only PoS annotations were considered, but there are other types of annotation such as
parse trees, named entities and word senses which potentially could be transfered jointly with word
alignment. This is left to future work, as are improvements to the baseline alignment model.
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4In order to provide a competitive but fair baseline, the same general approach was used with GIZA++ as with the new sys-

tem presented, using default parameters and no language-specific tuning. The specific alignment pipeline used was 13h533410,
and the symmetrization that provides the best alignment on the test set is chosen. This gives GIZA++ some advantage, but
ensures that any claimed improvements by our algorithm over GIZA++ are not simply due to symmetrization.



Model |A| |A ∩ S| |A ∩ P | P R F AER

English-French (|S| = 4038, |P | = 17438. 1 130 588 sentences)
Baseline 5359 3717 5134 95.8 92.1 93.9 5.8
AAA 5505 3751 5254 95.4 92.9 94.1 5.6
Supervised 5542 3778 5263 95.0 93.6 94.3 5.6
GIZA++ 4831 3531 4715 97.6 87.4 92.2 7.0
XRCE 90.1 93.8 91.9 8.5

Romanian-English (|S| = |P | = 6201. 48 641 sentences)
Baseline 3374 3070 3070 91.0 61.0 73.0 27.0
AAA 3447 3120 3120 90.5 62.0 73.6 26.4
GIZA++ 3730 3161 3161 84.7 62.8 72.1 27.9
ISI2 87.9 63.1 73.5 26.6
RACAI 76.8 71.2 73.9 26.1

English-Inuktitut (|S| = 293, |P | = 1972. 333 185 sentences)
Baseline 598 267 559 93.5 91.1 92.3 7.3
AAA 630 273 595 94.4 93.2 93.8 6.0
GIZA++ 342 170 306 89.5 58.0 70.4 25.0
JHU 96.7 76.8 85.6 9.5
JHU 84.4 92.2 88.1 14.3

English-Hindi (|S| = |P | = 1409. 3 556 sentences)
Baseline 712 606 606 85.1 43.0 57.1 42.9
AAA 817 677 677 82.9 48.0 60.8 39.2
GIZA++ 984 615 615 62.5 43.6 51.4 48.6
UMIACS2 43.7 56.1 49.1 50.9

English-Swedish (|S| = 3340, |P | = 4577. 692 662 sentences)
Baseline 3183 2742 2933 92.1 82.1 86.8 13.0
AAA 3125 2774 2961 94.8 83.1 88.5 11.3
Supervised 3262 2823 3034 93.0 84.5 88.6 11.3
GIZA++ 3436 2890 3136 91.3 86.5 88.8 11.1
LIU 85.3 – – 12.6

Table 2: Results from the empirical evaluation, including the Bayesian model without PoS tags (Base-
line), the alternating alignment-annotation algorithm (AAA), the corresponding method but with super-
vised PoS taggers for both languages (Supervised), and comparable previous results on the same data.
The number of alignment links |A|, of which |A ∩ S| are considered (S)ure, and |A ∩ P | (P)ossible, are
reported. For convenience, precision (P ), recall (R), F1 score (F ) and Alignment Error Rate (AER) are
also given.
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